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1  Introduction
Survival analysis plays a critical role in biomedical research, particularly in understand-
ing the time to event for diseases such as HIV [1]. The emergence of high-throughput 
technologies has led to the generation of increasingly high-dimensional or ultra-high-
dimensional clinical data [2]. As a result, effectively analyzing this data has become a 
substantial challenge. Traditional methods like the Cox Proportional Hazards (PH) 
model, its regularized extensions (e.g., Lasso-Cox, Ridge-Cox), and the time-depen-
dent Cox have been widely used [3]. Although they can handle high-dimensional and 
time-varying covariates reasonably well, these approaches face limitations in sce-
narios involving complex non-linear interactions and intricate temporal dynamics [4]. 
Regularized Cox models assume linear or additive covariate effects, which may fail to 
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capture intricate biological interactions [5]. While the time-dependent Cox models can 
incorporate time-varying features, they require explicit specification of time-covariate 
interactions and often struggle with high-dimensional longitudinal data (e.g., cyto-
kine trajectories with irregular measurements) [6, 7]. The standard Cox models require 
stratification or cause-specific hazards for competing events, which can be inefficient 
for multi-event outcomes [8, 9]. These limitations can result in suboptimal predictions 
in settings with complex biological interactions, where deep learning techniques could 
leverage their capacity to model such relationships more effectively [10].

Deep learning survival models, including DeepSurv, DeepHit, and Dynamic DeepHit, 
offer advanced methodologies that address these challenges by leveraging the flexibility 
of neural networks. These models can capture nonlinear interactions between covari-
ates and time-to-event outcomes, and some can handle time-varying data, making them 
well-suited for the analysis of high dimensional data with time-dependent covariates 
[11]. DeepSurv extends the traditional Cox PH model by replacing the linear predictor 
with a neural network, making it more flexible in capturing intricate patterns in the data 
[12]. DeepHit, on the other hand, is designed to predict single or multiple competing 
risks and events by directly modeling the joint distribution of time-to-event and event 
type [13]. Dynamic DeepHit builds upon DeepHit by incorporating time-varying covari-
ates, making it particularly useful for datasets with longitudinal information, such as 
cytokine profiles, where measurements change over time [14].

This paper explores the performance of DeepSurv, DeepHit, and Dynamic DeepHit 
applied to high-dimensional survival data with time-varying covariates alongside base-
line covariates. The goal in the application is to predict HIV incidence, explicitly focus-
ing on cytokine profiles as predictive features. Cytokine, which are signaling molecules 
that modulate immune responses, are considered key biomarkers of HIV risk [15, 16]. 
We incorporate the cytokine profile alongside baseline covariates into the DeepSurv 
and DeepHit using derived variables, specifically the mean of the longitudinal cytokine 
measurements (mean model) and the difference between the first and the last measure-
ments (difference model). For Dynamic DeepHit, we utilize time-varying cytokine mea-
surements to capture the evolving risk of HIV infection. Missing data is addressed using 
missForest, and model performance is evaluated using time-dependent concordance 
index (C-index) and Brier scores both, before and after imputation.

2  Deep learning survival models
2.1  DeepSurv

DeepSurv is a deep learning-based extension of the Cox PH model [17]. It employs a 
multi-layer perceptron, utilizing a feed-forward neural network to estimate an individ-
ual’s risk of events such as death or infection [12]. The input data, denoted as x, consists 
of observed covariates, which pass through fully connected, non-linear activation layers 
in the hidden network. These layers may vary in size and are followed by dropout layers 
to prevent overfitting [18]. The network’s output is a single node that estimates the risk 
function ĥθ(x), based on the network’s parameterized weights θ [12]. Like the Faraggi-
Simon network [19], DeepSurv uses the negative log partial likelihood from the Cox PH 
model [20] as its loss function. The loss function of the network is the negative log par-
tial likelihood L(θ) as shown in Eq. (1) with an additional regularization [12]:
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l(θ) := − 1
NE=1

∑
i:Ei=1


ĥθ(xi) − log

∑
r∈ℜ(ti)

eĥθ(xr)


 + λ∥θ∥2

2,� (1)

where λ is the ℓ2 regularization parameter and NE=1 is the number of individuals with 
observable event and θ is a set of all parameters. ti, Ei and xi are time, event (1: an event 
observed; 0, otherwise) and covariates for the ith observation respectively. The risk set 
ℜ(t) = {i : ti ≥ t} consists of those who are still at risk of the event at time t.

DeepSurv employs gradient descent optimization to determine the network’s weights, 
as detailed in Eq. (1). Additionally, it utilizes modern deep learning techniques to opti-
mize training, including input standardization, scaled exponential linear units (SELU) or 
Rectified Linear Unit (ReLU) [21] as the activation function, and the adaptive moment 
estimation (Adam) [22] optimizer for gradient descent with Nesterov momentum [23]. It 
also incorporates learning rate scheduling [24] and random or empirical hyper-parame-
ter optimization search [25] to further refine the model.

2.2  DeepHit

DeepHit is a multi-task deep neural network designed to directly learn the distribution 
of survival times without assuming any underlying stochastic process [26]. This allows 
both the model’s parameters and the form of the stochastic process to be determined by 
the covariates specific to the dataset used in survival analysis [13]. The network consists 
of two components: a shared subnetwork and cause-specific subnetworks. This architec-
ture enables DeepHit to handle datasets with either a single risk or multiple competing 
risks effectively. A single softmax layer is used as the output layer, and a residual connec-
tion from the input covariates is maintained and fed into each cause-specific subnetwork 
[27]. The shared subnetwork and the kth cause-specific subnetwork, for k = 1, ..., K 
consist of LS  and LC,k fully connected layers, respectively.

The shared sub-network receives covariates x as input and outputs a vector fs(x), 
which captures the latent representation common to the K events. Each cause-specific 
sub-network then takes as input the pair z = (fs(x), x), and produces an output vec-
tor fck(z) representing the probability of the first hitting time for a specific cause 
k. These outputs collectively form a joint probability distribution for the first hit-
ting time and event. The output of the softmax layer is a joint probability distribution 
y = [y1,1, ..., y1,tmax

, ...yK,1, ..., yK,tmax
], where yk,t represents the estimated probabil-

ity of an individual experiencing event k at time t given covariates x. This architecture 
enables the network to learn potentially non-linear and even non-proportional relation-
ships between covariates and risks.

To train DeepHit, the total loss function LT otal = L1 + L2 is minimized. L1 repre-
sents the negative log-likelihood of the first hitting time and event [28], which is defined 
as (Eq. (2))

L1 = −
N∑

i=1

[
�(ki ̸= ∅) · log

(
yi

ki,ti

)

+ �(ki = ∅) · log

(
1 −

K∑
k=1

F̂k(ti|xi)

) ]
,

� (2)
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where �(.) is an indicator function, ∅ represents censored observations and N is the 
sample size. ki, ti, and xi are event type, observed time and covariates for ith observa-
tion respectively. yi

ki,ti  is the predicted probability that the iith observation has an event 

type ki at time ti. The first term accounts for information from uncensored patients, 
while the second term addresses censoring bias by incorporating the knowledge that 
these patients were still alive at the time of censoring [29].

The Cumulative Incidence Function (CIF) represents the probability of a specific event 
k∗ ∈ K occurring on or before time t∗, conditional on the covariates x∗ [30], which is 
defined as (Eq. (3))

Fk∗(t∗|x∗) = P (t ≤ t∗, k = k∗|x = x∗)

=
t∗∑

t∗=0
P (t = t∗, k = k∗|x = x∗),� (3)

where K is a set of all possible events. However, since the true CIF Fk∗(t∗|x∗) is 
unknown, it is replaced with estimated CIF F̂k∗(t∗|x∗) =

∑t∗

m=0 yk∗,m. In order to 
fine-tune the network for each cause-specific estimated CIF, a ranking loss function is 
employed, which adapts the concept of concordance [31]. This ensures that an individual 
who dies at time t has a higher risk at that time compared to an individual who survives 
longer than t. L2 incorporates the estimated (cause-specific) cumulative incidence func-
tion (CIF) calculated at various time points. By incorporating L2 into the total loss func-
tion, incorrect ordering of pairs is penalized (with respect to event time).

2.3  Dynamic DeepHit

Dynamic DeepHit is a multi-task neural network that extends the DeepHit model by 
incorporating time-varying covariates, enabling it to capture dynamic changes in risk 
over time [14]. Given longitudinal data, the model is trained to estimate the joint dis-
tribution of the first hitting time and the event. This joint distribution is then used to 
estimate the cause-specific CIFs and the survival probabilities.The architecture consists 
of two parts: a shared subnetwork and a set of cause-specific subnetworks.

Shared subnetwork processes the history of longitudinal measurements to predict the 
next values of time-varying covariate. The history of longitudinal measurements for each 
subject i is described by X i = (Xi, Mi, ∆i) where Xi is a sequence of covariate vec-
tors 

{
xi

1, ..., xi
j

}
 and xi

j  is a vector of specific covariate 
[
xi

j,1, ..., xi
j,dx

]
, that includes 

both time-varying and static covariates measured at time ti
j  (0 ≤ ti

j ≤ t) for time stamps 
j = 1, ..., J  with number of covariates dx not necessarily measured at regular time 
intervals. Mi =

{
mi

1, ..., mi
j

}
 is a sequence of mask vectors indicating missing covari-

ates where mi
j =

[
mi

j,1, ..., mi
j,dx

]
 with mi

j,d = 1 if xi
j,d (the dth element of xi

j) was not 
measured and mi

j,d = 0 otherwise. ∆i =
{

δi
1, δi

2..., δi
j

}
 with δi

j  representing the time 
intervals between consecutive measurements for the subject i.The shared subnetwork 
comprises of 

(i)	Recurrent neural network (RNN) structure that inputs a tuple of (xj , mj , δj) and 
outputs (yj , hj) for time stamps j = 1, ..., J − 1, J  where yj  is the estimate of time-
dependent covariate after δj  has passed and hj  is the hidden state at time stamp j. hj  
is derived in Eq. (4) by utilizing gated recurrent unit (GRU) RNN. 
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zj = σ(Wzhj−1 + Uz[xj ; mj ; δj ] + bz),
rj = σ(Wrhj−1 + Ur[xj ; mj ; δj ] + br),
h̃j = tanh(Wh(rj ⊙ hj−1) + Uh[xj ; mj ; δj ] + bh),
hj = (1 − zj) ⊙ hj−1 + zj ⊙ h̃j ,

� (4)

	  where the parameters of the shared subnetwork are given by bz , br  and bh as the bias 
vectors; Wz , Wr  and Wh as the hidden-state weights; Uz , Ur  and Uh as the inputs 
weights for update gates zj , reset gate rj  and candidate hidden state hj  respectively, 
processing concatenated inputs [xj ; mj ; δj ]. σ(.) is the sigmoid function and ⊙ is the 
element-wise multiplication.        

(ii)	Attention mechanism helps to unravel the temporal significance of past measurements 
in making risk predictions. Specifically, the temporal attention mechanism [32] 
applied to the hidden states allows the network to focus on the most relevant parts of 
previous longitudinal measurements, guiding the model in deciding which historical 
data points to prioritize. It outputs weighted sum of past hidden states c (Eq. (5)) 

c =
J−1∑
j=1

ajhj � (5)

	  where aj = exp(ej)∑J−1
ℓ=1

exp(eℓ)
 is the importance of the jth value with ej = fa(hj , xJ , mJ ) 

as the score importance of the jth measurement by referencing on the last measurement 
(xJ , mJ ). We set fa(.) as a two-layer feed-forward network that takes the hidden 
state at time stamp j, hj , and the tuple of (xJ , mJ ) as the input and outputs of a scalar 
ej  for j = 1, ..., J − 1, J .

    
Cause specific subnetwork estimates the joint distribution of the first hitting time 

and event by utilizing feed-forward network comprising of fully connected layers. This 
subnetwork inputs the vector c and last measurement (xJ , mJ ) and outputs a vector 
fck(c, xJ , mJ ).

Dynamic DeepHit uses a softmax layer to aggregate the outputs of the cause-specific 
subnetworks, fc1(.), ..., fcK(.), and convert them into a valid probability distribution. 
This allows the network to estimate the joint distribution of the first hitting time and the 
event. Specifically, for a subject with covariates X ∗ each output node represents the esti-
mated probability of experiencing event k at time t. The CIF [30] for cause k∗ ∈ K on or 
before time t∗ conditional on the history of longitudinal measurements X ∗ is recorded 
up to t∗

j∗ , where K is the set of all possible events.
The true CIF Fk∗(t∗|X ∗) is not known, hence the estimated CIF is utilized and given 

by (Eq. (6))

F̂k∗(t∗|X ∗) =
∑
t≤t∗

o∗
k∗,t,� (6)

where o∗
k∗  is the estimated probability of experiencing event k∗t at time t conditional on 

X ∗.
To train Dynamic DeepHit, the total loss function LT otal = L1 + L2 + L3 is minin-

mized. L1 represents the negative log-likelihood of the first hitting time and the 
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corresponding event, accounting for right-censoring [31]. This is adapted to a survival 
analysis context, where the history of longitudinal measurements and k risks are avail-
able. L2 (ranking loss) incorporates the estimated CIFs at different time points to refine 
the network’s accuracy for each cause-specific CIF. To achieve this, a ranking loss func-
tion is used, which adapts the concept of concordance [31]. Since subjects’ longitudinal 
measurements can start at any point in their life or disease progression [33], their risks 
are compared based on the time elapsed since their last measurement that is for subject 
i, we focus on τ i = ti − ti

j . A pair (i, r) is considered acceptable pair for event k if subject 
i experiences event k at time ti

j  while subject r remains event-free until ti
j  (i.e the event 

time of r is later than event time of i, tr
j > ti

j). The estimated CIF satisfies concordance 
if F̂k(tr

j + ti
j |X r) > F̂k(ti

j + ti
j |X i). The ranking loss is then defined among valid pairs 

of subjects with different measurement histories. L3 (prediction loss) incorporates an 
auxiliary task that predicts yj the step-ahead covariates xj+1, to regularize the shared 
subnetwork, ensuring that the hidden representations preserve information for future 
predictions and takes into account missing measurements.

3  Performance evaluation
3.1  Time-dependent concordance index (Ctd-index)

The time-dependent C-index is a metric used in survival analysis to assess concor-
dance between predicted survival times and actual event times [34]. Unlike the standard 
C-index, which provides a single performance value [31], the time-dependent version 
accounts for the chronological progression of events, reflecting changes in model dis-
crimination over time [35]. By comparing predicted survival probabilities at various time 
points with actual outcomes, it evaluates whether individuals who experience an event 
(e.g., death or failure) have a lower predicted probability of survival than those who 
do not [36]. This approach ensures an accurate representation of model performance 
throughout the study period.

For the setting with longitudinal measurements, a cause specific time-dependent 
C-index (Ctd

k (t, ∆t)) is adapted which is an extension of the C-index [37]. More spe-
cifically, Ctd

k (t, ∆t) incorporates both the prediction and evaluation times to account for 
potential changes in risk over time [38]. The time dependent C-index ranges from 0 to 1, 
and a larger value indicates better performance.

3.2  Time-dependent Brier score BStd

The time-dependent Brier score is a crucial metric for evaluating the accuracy of sur-
vival predictions over time [39]. Unlike static measures, the time-dependent Brier score 
evaluates model performance at multiple time intervals, making it sensitive to how well 
the model captures changes in survival risk throughout the study period. By definition 
BS(t) is the mean squared error of the difference between a model based survival func-
tion S(t; x) and event status I(T > t) [40]. The time-dependent Brier score is calculated 
as the mean squared error between the predicted survival function Ŝ(t; xi) and the 
observed event status I(T i > t) at a given time point t, detailed in Eq. (7)

B̂S(t) = 1
n

n∑
i=1

ŵi(t)
{

I(T i > t) − Ŝ(t; xi)
}2

,� (7)
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where ŵi(t) is the inverse probability of censoring weights (IPCW) [41], given by (Eq. 
(8))

ŵi(t) = (1 − I(T i > t))γi

Ĝ(T i−)
+ I(T i > t)

Ĝ(t)
,� (8)

where I(.) is an indicator function, γi indicates the censoring status of subject i (1 if event 
is observed, 0 if event is censored) and Ĝ(t) is the estimated survival function of censor-
ing at time t while Ĝ(T i−) is the estimated probability of uncensored subjects. The score 
typically ranges between 0 and 1, but values may exceed 1 when inverse probability of 
censoring weights (IPCW) are applied in heavily censored datasets [42].

4  Handling missing data: missForest
MissForest is an imputation technique that utilizes the Random Forest algorithm to 
estimate missing values. Adapted from Breiman’s Random Forest approach [43], it is 
well-suited for data containing a mix of variable types and can capture complex, non-
linear relationships without relying on parametric assumptions. The imputation pro-
cess is iterative: a Random Forest model is first built using available data, then used to 
predict missing values, with predictions refined over successive iterations [44]. Miss-
Forest is accessible as an R package named missForest [45]. After imputation, the per-
formance of continuous variables is evaluated using the normalized root mean squared 
error (NRMSE) [46]. For categorical variables, the proportion of falsely classified entries 
(PFC) over the missing categorical values, ∆F  is used as a performance metric. In both 
cases, a value close to 0 indicates good performance, while a value around 1 signifies 
poor performance.

5  Real data application
5.1  Dataset

The dataset for this study was obtained from the Centre for the AIDS Programme of 
Research in South Africa (CAPRISA 004 trial), a double-blind, randomized, two-arm 
study comparing placebo and Tenofovir groups. The trial aimed to evaluate the effec-
tiveness of Tenofovir gel, a vaginal microbicide, and involved enrolling HIV-negative, 
sexually active women aged 18 to 40 in South Africa [47]. The trial spanned 30 months, 
with an 18-month recruitment phase and a 12-month follow-up period. The dataset 
included longitudinal measurements of 48 cytokines and 46 baseline characteristics 
from 812 participants, 96 of whom contracted HIV. Cytokine levels were measured from 
stored plasma samples and cervicovaginal lavage specimens in both the case and control 
groups. The primary endpoint was time-to-HIV infection (incidence), measured from 
study enrollment until positive HIV test or censoring (end of follow-up/loss to contact). 
Events were confirmed via laboratory testing, with censoring applied for participants 
remaining HIV-negative at trial completion.

After pre-processing, 24 baseline variables and all 48 cytokines were retained for anal-
ysis. There were 699 participants included in the complete case analysis before imputa-
tion and 812 participants after imputation. All data preparation and imputation were 
conducted using R (version 4.4.1) [48] while statistical analyses both training and test-
ing of the deep learning models were done in Python [49]. The dataset was divided into 
two distinct subsets: 80% for training and 20% for testing, applied separately to both the 
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complete case (train set: N=560, test set: N=139) and imputed (train set: N=650, test set: 
N=162) datasets. To prevent data leakage, the imputed dataset’s training set excluded 
all observations present in the complete-case testing set. Consequently, the imputed 
dataset’s testing set comprised all observations from the complete-case testing set, along 
with additional (imputed) data points. The training set was used to build the predictive 
model, while the testing set assessed its accuracy. The data was split using a fixed seed 
value of 2408 to maintain consistency and reproducibility.

5.2  Results

Survival models using DeepSurv, DeepHit, and Dynamic DeepHit were built with the 
training set (80% of data) and prediction done on the test set (20% of data), applied to 
both the complete case and imputed datasets. To ensure reproducibility of all the results, 
a fixed seed value of 2408 was applied. Missing data were handled using the missForest 
method, which employed 500 trees and 100 iterations. For each DeepSurv and DeepHit 
model, two versions were fitted: one based on the mean of individual cytokine measure-
ments combined with baseline covariates (mean model), and another based on the dif-
ference between the first and last recorded cytokine measurements (difference model), 
also incorporating baseline covariates. In the Dynamic DeepHit model, a single version 
was fitted, which included the original time-varying cytokine values alongside baseline 
covariates. Cytokine profile measurements were collected longitudinally for each subject 
from the time of enrollment until either the time of HIV incidence or the end of the trial 
(for those who remained HIV-negative). As such, all available cytokine measurements 
up to the point of the event (HIV incidence) or censoring were included in the predic-
tion process.

The models were fine-tuned using specific hyperparameters, which were optimized 
through an empirical search to enhance performance. To guide this tuning process and 
mitigate overfitting, 20% of the training data was set aside as a validation set. This valida-
tion set was used to monitor model performance during training and to select the hyper-
parameter configurations that yielded the best generalization. For the DeepSurv model, 
a dropout rate of 0.1 was applied to reduce overfitting, while the learning rate was set 
at 0.01 to control the model’s convergence speed. The architecture included two layers 
with 32 nodes each, utilizing the ReLU activation function for non-linearity. The model 
was trained with a batch size of 256 and optimized using the Adam optimizer over 2000 
epochs. Similarly, the DeepHit model used the same architecture, with two layers of 32 
nodes and a dropout rate of 0.1. It employed a learning rate of 0.01, a batch size of 256, 
and was also trained for 2000 epochs. Key additional parameters included alpha (1.0) 
and sigma (0.1), which influenced the loss function and regularization, respectively, 
alongside the Adam optimizer.

For the Dynamic DeepHit model, more complex parameters were set. The batch size 
was 32, with a burn-in period of 3000 iterations followed by 5,000 training iterations. 
A keep probability of 0.6 was used to manage dropout during training, and the learn-
ing rate at 0.01. The architecture included two RNN layers (LSTM-Long Short-Term 
Memory) with 100 hidden units and two fully connected layers with ReLU activations. 
The model also incorporated attention mechanisms and conditional survival layers, each 
with two layers. Regularization terms for weights were set at 0.00001 for both input and 
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output. Other key parameters included alpha (1.0), beta (0.1), and gamma (1.0) to bal-
ance the trade-offs between loss components.

The performance of the three models DeepSurv, DeepHit, and Dynamic DeepHit was 
assessed using the time-dependent C-index and time-dependent Brier score, with results 
in Tables 1, 2, and 3. These metrics were applied to both the complete case and imputed 
datasets to evaluate model accuracy. For the Dynamic DeepHit model, the metrics were 
specifically calculated at various prediction and evaluation time points to capture its 
performance across different time stamps.

The results presented in Table 1 show the time-dependent C-index and Brier scores 
for DeepSurv and DeepHit models using both mean-based and difference-based covari-
ate approaches, before and after imputation. Before imputation, the DeepSurv models 
yielded C-index values of 0.6175 (mean-based) and 0.6246 (difference-based), with cor-
responding Brier scores of 0.1318 and 0.1206, respectively. After imputation, the C-index 
values were 0.6870 (mean-based) and 0.7022 (difference-based), while Brier scores were 
0.1141 and 0.1038, respectively. These results reflect how model performance metrics 
varied across different covariate representations and data preprocessing strategies.

Table 1  The performance results for the deep learning survival models using the 20% test data (td; 
time-dependent)

Model Before Imputation (N=139) After Imputation (N=162)

Ctd-index BStd    Ctd-index BStd   
DeepSurv Mean 0.6175 0.1318 0.6870 0.1141

Difference 0.6246 0.1206 0.7022 0.1038
DeepHit Mean 0.6318 0.1245 0.6976 0.1223

Difference 0.6714 0.1101 0.7135 0.0979

Table 2  The performance results for Dynamic DeepHit model by time-dependent C-index over 
different evaluation and prediction time using the 20% test data

Evaluation time points(months)

Before imputation (N=139) After imputation (N=162)

Three Six Nine Twelve Fifteen Three Six Nine Twelve Fifteen
Predic-
tion time 
points 
(months)

Three 0.6851 0.6851 0.8326 0.5692 0.5692 0.8432 0.8213 0.8350 0.8098 0.7990
Six 0.6851 0.8316 0.5692 0.5736 0.6190 0.8331 0.8298 0.8000 0.7990 0.7990
Nine 0.9764 0.7248 0.7248 0.7544 0.7544 0.8276 0.8001 0.7968 0.7968 0.7968
Twelve 0.7847 0.7843 0.8121 0.8121 0.8121 0.8501 0.8501 0.8501 0.8501 0.8501
Fifteen 0.7958 0.8173 0.8173 0.8173 0.8173 0.8551 0.8551 0.8551 0.8544 0.8544

Table 3  The performance results for Dynamic DeepHit model by time-dependent Brier Score over 
different evaluation and prediction time using the 20% test data

Evaluation time points(months)

Before imputation (N=139) After imputation (N=162)

Three Six Nine Twelve Fifteen Three Six Nine Twelve Fif-
teen

Prediction time 
points(months)

Three 0.0013 0.0032 0.0056 0.0135 0.0167 0.0081 0.0098 0.0171 0.0267 0.0523
Six 0.0016 0.0059 0.0124 0.0163 0.0376 0.0091 0.0165 0.0279 0.0467 0.0574
Nine 0.0064 0.0109 0.0143 0.0259 0.0326 0.0148 0.0264 0.0419 0.0579 0.0693
Twelve 0.0111 0.0155 0.0255 0.0322 0.0410 0.0299 0.0427 0.0573 0.0682 0.0766
Fifteen 0.0189 0.0252 0.0317 0.0433 0.0415 0.0429 0.0569 0.0691 0.0751 0.0777
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Table 1 also presents the performance metrics for the DeepHit models using both 
mean-based and difference-based covariate approaches, before and after imputation. 
Prior to imputation, the mean-based and difference-based models produced C-index val-
ues of 0.6318 and 0.6714, with Brier scores of 0.1245 and 0.1101, respectively. Following 
imputation, the C-index values were 0.6976 (mean-based) and 0.7135 (difference-based), 
while Brier scores were 0.1223 and 0.0979, respectively. These results illustrate how the 
DeepHit model’s performance metrics varied across different covariate representations.

The performance of the Dynamic DeepHit model, as measured by the time-dependent 
C-index in Table 2, shows distinct trends across various prediction and evaluation time 
points, both before and after imputation. Before imputation, the C-index for earlier 
prediction times (three and six months) was generally moderate. However, as the pre-
diction time increased, the model performance varied. After imputation, the model con-
sistently improved across all evaluation and prediction time points. For instance, at the 
prediction time point of three months, the C-index improved significantly to 0.8432 at 
three months of evaluation and remained relatively high across subsequent evaluations, 
reaching 0.8350 at nine months. Similarly, the twelve-month prediction time showed a 
notable increase, with the C-index reaching 0.8501 across several evaluation time points. 
Even for the longest evaluation time (15 months), the C-index remained higher, consis-
tently exceeding 0.85 for various prediction time points. These results provide a detailed 
view of model performance under different temporal settings, reflecting the behavior of 
the Dynamic DeepHit model under both complete-case and imputed data scenarios.

Similarly, evaluation using the time-dependent Brier Score depicted in Table 3, illus-
trated notable trends across various prediction and evaluation time points before and 
after imputation. Before imputation, the Brier scores were relatively low for shorter pre-
diction times, with values such as 0.0013 at three months of evaluation. However, as the 
evaluation time extended, Brier scores generally increased, indicating a decline in pre-
dictive accuracy, with the score reaching 0.0167 at fifteen months. The scores remained 
below 0.05 throughout the whole evaluation period, suggesting good initial performance 
but a gradual increase in prediction error over time. After imputation, the Brier scores 
consistently increased across evaluation times. For example, the score at the predic-
tion time point of three months rose to 0.0081 and continued increasing to 0.0523 at 
fifteen months. Across both scenarios, Brier scores remained relatively low throughout 
the evaluation periods, providing a quantitative summary of prediction error over time 
under different data conditions.

Figure 1 illustrates two survival curves (panels a and b) generated by the DeepSurv 
model for ten randomly sampled individuals at risk of HIV infection over a 30-month 
period. Each colored line represents a different individual from the test set of the 
imputed data. In the mean model (panel a), the survival probability decreases gradu-
ally and smoothly over time, with the curves diverging slowly. This indicates a moder-
ate variation in predicted survival times among individuals. In contrast, the difference 
model (panel b) displays more pronounced separation between the curves, suggesting 
a greater variability in survival predictions. For instance, according to the mean model, 
individual 0 has approximately an 89% chance of surviving up to 15 months, while indi-
vidual 8 shows a higher survival probability of about 96% at the same time point. How-
ever, in the difference model, the survival probability for individual 0 at the 15-month 
mark drops to roughly 87%, highlighting the impact of the difference-based approach 
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on survival predictions. The curves flatten at t = 24 months and beyond likely due to 
some individuals receiving preventative treatments, which helps reduce their risk of HIV 
infection.

Figure 2 shows the predicted probabilities of HIV risk generated by the DeepHit model 
for each 10 randomly sampled individuals in the test set of the imputed data over a 
30-month period. The DeepHit model provides a probability vector for each individual, 
indicating their risk of HIV infection at each time point. During the first 20 months, the 
risk of HIV infection remains relatively low, but it increases thereafter. This increase is 
more pronounced in the mean model (panel a) compared to the difference model (panel 
b). In the mean model, there are several noticeable spikes in risk throughout the evalua-
tion period, indicating periodic increases in predicted probabilities for certain individu-
als. The lower risk observed in the DeepHit model during the first few months aligns 
with the predicted survival curves from the DeepSurv model, where survival probabili-
ties are initially high and gradually decrease with increase in the evaluation period.

6  Discussion
Traditional hazard-based models like the Cox PH model are designed to assess the 
impact of variables on survival outcomes, rather than to make predictions [50]. When 
predicting outcomes like HIV incidences alternative approaches such as machine learn-
ing or deep learning methods may be considered for additional flexibility and improved 
performance. While traditional statistics focus on explanation, machine learning priori-
tizes prediction [51]. The Cox PH models are established statistical tools for providing 
interpretable results but may struggle with complex, high-dimensional data, non-linear 
relationships, and covariates that violate PH assumptions, such as time-varying covari-
ates [7, 52–55]. In contrast, deep learning models, such as recurrent neural networks 
(RNNs) and other architectures, excel in handling these complexities [56]. They model 
non-linear relationships and high-dimensional data without requiring explicit feature 
engineering or prior assumptions leading to superior prediction performance [57]. Deep 
learning’s adaptability to large datasets and its capability to learn from nuanced patterns 
in the data provides it with a significant advantage in HIV incidence prediction [58, 59].

In this paper, we applied DeepSurv, DeepHit, and Dynamic DeepHit to a real HIV 
dataset and successfully evaluated their ability to make accurate dynamic survival pre-
dictions. DeepSurv, a deep feed-forward neural network, estimates each individual’s 
impact on their hazard rates, integrating deep learning with traditional survival analysis 
[12]. By incorporating non-linear relationships, it extends the Cox PH model to han-
dle complex survival data more effectively. DeepSurv has been widely used in clinical 
studies to improve survival predictions and treatment recommendations, demonstrat-
ing state-of-the-art performance [12]. Its application shows great potential in advanc-
ing personalized medicine and enhancing treatment outcomes across diverse patient 
populations [60, 61]. DeepHit on the other hand is designed to directly learn the distri-
bution of survival times without assuming any underlying stochastic process [26] while 
Dynamic DeepHit incorporates time-varying covariates, enabling it to capture dynamic 
changes in risk over time [14].

Our results from the data analysis highlight the importance of incorporating time-
varying covariates into survival models, mainly when dealing with high-dimen-
sional biomarker data. While DeepSurv and DeepHit offered practical approaches to 
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modeling static summary statistics of cytokine profiles, they did not fully capture the 
evolving nature of the cytokine data over time. In contrast, the Dynamic DeepHit model 
is uniquely positioned to accommodate the dynamic structure of longitudinal biomarker 
data. Integrating the full-time profiles allowed for a more nuanced interpretation of 
how temporal changes in biomarkers influenced HIV incidence over time. This does not 
necessarily imply superior performance in predictive metrics but instead highlights the 
model’s robustness and suitability in contexts where dynamic patterns are critical.

The use of missForest for imputation proved to be a pivotal step in enriching the data-
sets, enabling the construction of more informative and potentially more generalizable 
models. While direct comparison between imputed and non-imputed datasets is inher-
ently challenging due to differences in sample size and composition, imputation signifi-
cantly enhanced usable data. This enrichment facilitated training on a broader and more 
representative population sample, providing valuable insights into the underlying pat-
terns. A stringent data-splitting strategy was applied to ensure fairness and prevent data 
leakage during evaluation. Specifically, the training set for the imputed dataset excluded 
all observations present in the complete-case testing set. Conversely, the testing set for 
the imputed dataset incorporated both the complete-case testing observations and addi-
tional imputed data points. This approach minimized overlap and supported a more 
balanced framework for assessing the models built on imputed versus non-imputed 
datasets.

Although hyperparameters were optimized through empirical search, this method 
presents several challenges. The process is computationally intensive, requiring exhaus-
tive exploration of predefined parameter ranges without adaptive refinement. Addition-
ally, identifying the optimal configuration is not guaranteed, as the initially selected 
bounds constrain the search. Overall, the enriched dataset and careful data-splitting 
methodology underscore the importance of thoughtful handling of missing data. Cou-
pled with the challenges of hyperparameter optimization, these considerations highlight 
the intricate balance required to develop robust and meaningful survival models tailored 
to complex, high-dimensional biomarker datasets.

7  Conclusions
Deep learning models offer transformative possibilities in survival analysis for high-
dimensional datasets, particularly in scenarios involving time-varying covariates. Our 
findings emphasize the value of Dynamic DeepHit as a robust approach for capturing 
the dynamic nature of cytokine profiles over time, providing deeper insights into their 
influence on HIV incidence. While imputation techniques like missForest enriched the 
datasets and enabled the development of more informative and generalizable models, it 
is essential to attribute the improved robustness to the added information rather than 
imputation alone. This study highlights the necessity of dynamic modeling and thought-
ful data handling strategies, paving the way for future research to advance survival analy-
sis methodologies in clinical and epidemiological settings.

8  Supplementary information
The GitHub repositories of the model developers (DeepSurv, DeepHit, Dynamic Deep-
Hit) were instrumental in creating the analysis code utilized in this paper.

https://github.com/jaredleekatzman/DeepSurv
https://nbviewer.org/github/havakv/pycox/tree/master/examples/
https://github.com/chl8856/Dynamic-DeepHit/tree/master
https://github.com/chl8856/Dynamic-DeepHit/tree/master
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